If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+1026x-4860=0
a = 9; b = 1026; c = -4860;
Δ = b2-4ac
Δ = 10262-4·9·(-4860)
Δ = 1227636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1227636}=\sqrt{2916*421}=\sqrt{2916}*\sqrt{421}=54\sqrt{421}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1026)-54\sqrt{421}}{2*9}=\frac{-1026-54\sqrt{421}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1026)+54\sqrt{421}}{2*9}=\frac{-1026+54\sqrt{421}}{18} $
| 2+c=5.50 | | -7y-15=20 | | 1/2w+4=5/w-2 | | -7y–15=20 | | 2^x-2=16000 | | 3n=22.2n+9 | | 3/2 b+5=20−b | | 15-3(2y-4)=15 | | 306=17w | | 3/8m+5=3/4 | | -408=12s | | j-24=9 | | t-22=59 | | 156=87-x | | -v+242=183 | | w-15=52 | | 98=t+7 | | 2m^2−8=0 | | Y^+7y+10=0 | | 2m2−8=0 | | 29+5x=54 | | 3/8b+16/8=28/8 | | 12(x-3)=8x-20 | | 5x=6x2–3 | | 4(x+1)+38=-3x | | x-(-6.90=-2.9 | | 9-13x+5=x3-2-20x | | 5x–8–2x=25 | | 125=〖25〗^6x | | 10+7w=38 | | 16=24-4g | | 7(√m+1-3)=21 |